The data attributes of the three criteria are not different; STA-9090 however, the output of the quantitative ratio of profit was computed through defuzzification in the FLIS. On the ground of environmental protection, the ratio of profit can provide the contractor with a self-assessment tool in green transformation and green innovation.The profit ratio was used to determine competitive advantage due to green innovation. The higher the quantitative value of the profit ratio, the better the competitive advantages of the contractor. Figure 6 showed the 3D diagrams of input and output mapping. Figure 6 may effectively help decision makers to make well-founded judgments based on an understanding of the association between the input and output in various scenarios.
Table 11 listed the optimal and worst quantitative output value, computed by the FLIS and the simulated cases. The input scenario in Table 11 was either the quantitative output value or the word used in natural language, such as good (high), ordinary (moderate), and poor (low). Therefore, according to the content in Table 11, the decision maker can assess and compare the advantages and disadvantages of different cases quantitatively and specifically decide the pros and cons of plans, such that rational decisions can be made systematically. Figure 6Inputs and output mapping.Table 11Optimal, worst output value, and simulated case.5. Conclusions This study successfully combines four scientific methodologies to develop a contractor assessment model for facilitating green innovations.
The system dynamics model predicts that the trend in the number of contractors in Taiwan will increase in the future. The increases will bring more competition to the construction industry and directly impact the contractor profits. Additionally, the construction industry will face more challenges, such as stricter factors in environmental protection, advances in technology, green transformation, and green innovation. These challenges will become important factors determining whether a contractor can survive in the market. The results of the three simulated cases (Case 1, Case 2, and Case 3) indicated that, in the future, contractors with better green innovation will be more profitable and more competitive in the market. The aforementioned lives of evidences suggest the importance of green innovation and the practical use of the proposed assessment model for the construction industry.
Every scientific methodology has its own basic hypothesis. This study complies with the fundamental hypothesis of each research methodology with appropriate applications of these hypotheses and methodologies. Various methodologies were employed in this study in a complementary manner, with each methodology addressing individual aspects Batimastat of the problem. Therefore, this study explores the possibility of integrating various methodologies into industrial practices and demonstrates its applicability.