Compared to titanium alkoxides or TiCl4, there are much fewer reports on the synthesis of TiO2 nanostructure with the precursor of TiCl3. Normally, anatase TiO2 film can be fabricated
via the anodic oxidation hydrolysis of TiCl3 solution [17, 18]. Recently, Hosono et al. synthesized rectangular parallelepiped rutile TiO2 films by hydrothermally treating TiCl3 solution with the addition of a high concentration of NaCl [19], and Feng et al. developed TiO2 nanorod films with switchable superhydrophobicity/superhydrophilicity transition properties via a similar method [20]. Moreover, a hierarchically branched TiO2 nanorod film with efficient photon-to-current conversion efficiency can be achieved GSK126 concentration by treating the nanorod TiO2 film in TiCl3 solution [21]. However, all of these nanostructural TiO2 films from TiCl3 solution were grown over glass or alumina substrates. Fabricating nanostructral TiO2 films over metallic Ti substrates is a promising way to providing high-performance photoresponsible electrodes for photoelectrochemical applications. The obstacle learn more for starting from Ti substrates and TiCl3 solution must be the corrosion of metallic Ti at high temperatures in the HCl solution, which is one of the components in TiCl3 solution. However, the corrosion could also be controlled and utilized for the formation of porous structures. According to reports,
the general method to prepare nanoporous TiO2 film on Ti substrate is through anodic oxidation and post-sonication [10, 12]. In this contribution, we proposed a facile way to fabricate nanoporous TiO2 films by post-treating the H2O2-oxidized TiO2 film in a TiCl3 solution. The as-prepared Megestrol Acetate nanoporous TiO2 film display homogeneous porous structure with enhanced optical adsorption property and photoelectrocatalytic performance, which indicates that the film is promising in the applications of water purification and photoelectrochemical devices. Methods Cleansed Ti plates (99.5% in purity, Baoji Ronghao Ti Co. Ltd., Shanxi, China) with sizes of 1.5 × 1.5 cm2 were pickled in a 5 wt% oxalic acid solution at 100°C for 2 h,
followed by rinsing with deionized water and drying in an air stream. The nanoporous TiO2 film was prepared by a two-step oxidation procedure. Briefly, the pretreated Ti plate was firstly soaked in a 15 mL 20 wt% H2O2 solution in a tightly closed bottle, which was maintained at 80°C for 12 h. The treated Ti plate was rinsed gently with deionized water and dried. Then, it was immersed in a 10 mL TiCl3 solution (0.15 wt%) at 80°C for 2 h. Finally, the film was cleaned, dried, and calcined at 450°C for 2 h. The obtained nanoporous TiO2 film was designed as NP-TiO2. Two control samples were synthesized, including the one designed as TiO2-1, which was obtained by directly calcining the cleansed Ti plate, and the other named as TiO2-2, which was prepared by one-step treatment of the Ti plate in a TiCl3 solution.