Figure 1 represents the distribution of TRF length, hTERT and hTR expression, TA (Figure 1A) and telomere factors CHIR-99021 price expression (Figure 1B) in peritumoral and tumoral samples derived from patients suffering from idiopathic, HBV-, HCV-, and alcohol-related HCC. Figure 2 represents the expression of Ki67 (Figure 2A), hTERT (Figure 2B) and {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| telomere protective factors (Figure 2B and C) at the protein level. Figure 1 Common and specific telomere abnormalities between HBV-, HCV-, and alcohol-associated cirrhosis and hepatocellular carcinoma. A. Distribution of hTERT and hTER expression,
telomerase activity and TRF length among the main causes of hepatocellular carcinoma. B. Alteration in shelterin and non-shelterin gene expression at the two main steps www.selleckchem.com/products/LBH-589.html of liver carcinogenesis in vivo. Significantly overexpressed genes (p < 0.05, Mann Whitney test) are represented in black whereas significantly underexpressed genes are represented in gray. Figure 2 Immunohistochemistry and Western-blot analysis. (A) Ki67, (B) hTERT, (C ,D) shelterin and non-shelterin and (D) telomere factors in the main causes
of cirrhosis and hepatocellular carcinoma. Telomere deregulation at the early stage of HBV-associated hepatocarcinogenesis Expression of the proliferative marker Ki67 was not significantly different between the 8 HBV positive cirrhotic samples and the 12 non-cirrhotic liver samples deriving from patients with HCC. As illustrated in Figure 1A, the level of hTERT expression was significantly higher in the 8 HBV positive Fossariinae cirrhotic samples than in the 12 non-cirrhotic liver samples (p = 0.040, Mann–Whitney test).
In contrast, there was no significant difference in the level of TA between the cirrhotic and non-cirrhotic sample categories. HBV-associated cirrhosis expressed significantly lower hTR levels when compared to histologically non-cirrhotic liver tissue: 0.0053 versus 0.3574 arbitrary units (p < 10-4, Mann–Whitney test) (Figure 1A). The TRF length was longer in HBV positive cirrhotic samples than in non-cirrhotic samples (6.60 kbp versus 5.69 kbp) but the difference was not statistically significant. Comparative Western-blot analysis of hTERT expression in HBV positive cirrhotic samples versus non-cirrhotic liver samples confirmed the qRTPCR results for hTERT expression (Figure 2B). Table 2 and Figure 1B show that all shelterin and non-shelterin telomere factors except HMRE11A and RAD50 were significantly underexpressed in HBV positive peritumoral cirrhotic samples.