Nanoscale Res Lett 2011,6(1):1–13. 4. Mehrali M, Tahan Latibari S, Mehrali M, Mahlia TMI, Metselaar HSC: Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials. Energy 2013, 58:628–634.CrossRef 5. Pastoriza-Gallego MJ, Lugo L,
Legido JL, Piñeiro MM: Thermal conductivity and viscosity measurements of ethylene glycol-based Al 2 O 3 nanofluids. Nanoscale Res Lett 2011,6(1):1–11. 6. Zhi C, Xu Y, Bando Y, Golberg D: Highly thermo-conductive fluid with boron nitride nanofillers. ACS Nano 2011,5(8):6571–6577.CrossRef 7. Neogy RK, Raychaudhuri AK: Effect of stabilizer on dynamic thermal transport property of ZnO nanofluid. Nanoscale Res Lett p38 MAPK inhibitor 2013,8(1):1–6.CrossRef 8. Yeganeh M, Shahtahmasebi N, Kompany A, Goharshadi EK, Youssefi A, Šiller L: Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int J Heat Mass Transf 2010,53(15–16):3186–3192.CrossRef 9. Wang J, Xie H, Xin Z, Li Y: Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon 2010,48(14):3979–3986.CrossRef 10. Lee KJ, Yoon SH, Jang J: Carbon
nanofibers: KPT-330 in vitro a novel nanofiller for nanofluid applications. Small 2007,3(7):1209–1213.CrossRef 11. Yu W, Xie H, Bao D: Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology 2010,21(5):buy Fedratinib 055705.CrossRef 12. Baby TT, Ramaprabhu S: Investigation of thermal and C-X-C chemokine receptor type 7 (CXCR-7) electrical conductivity of graphene based nanofluids. J Appl Phys 2010,108(12):124308.CrossRef 13. Zheng R, Gao J, Wang J, Feng SP, Ohtani H, Wang J, Chen G: Thermal percolation in stable graphite suspensions. Nano Lett 2011,12(1):188–192.CrossRef 14. Baby TT, Ramaprabhu S: Synthesis and nanofluid application of silver nanoparticles decorated graphene. J Mater Chem 2011,21(26):9702–9709.CrossRef 15. LotfizadehDehkordi B, Kazi SN, Hamdi
M, Ghadimi A, Sadeghinezhad E, Metselaar HSC: Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf 2013,49(8):1109–1115.CrossRef 16. Hassan M, Sadri R, Ahmadi G, Dahari MB, Kazi SN, Safaei MR, Sadeghinezhad E: Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels. Entropy 2013,15(1):144–155.CrossRef 17. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu LW, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, et al.: A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 2009,106(9):094312.CrossRef 18. Nasiri A, Shariaty-Niasar M, Rashidi AM, Khodafarin R: Effect of CNT structures on thermal conductivity and stability of nanofluid. Int J Heat Mass Transf 2012,55(5–6):1529–1535.CrossRef 19.