Using
PPI here in conjunction with a production task in an inflectionally rich language, we found that functional connectivity between the left inferior frontal gyrus (LIFG) and bilateral superior temporal gyri (STG) was significantly greater for regular real verbs than for irregular ones. Furthermore, we observed a significant positive covariance between the number of mistakes in irregular real verb trials and the increase in functional connectivity between the LIFG and the right anterior cingulate cortex in these trails, as compared to regular ones. Our results therefore allow for dissociation SNX-5422 between regularity and processing difficulty effects. These results, on the one hand, shed new light on the functional interplay within the LIFG-bilateral STG language-related network and, on the other hand, call for partial reconsideration of some of the previous findings while stressing the role of functional temporo-frontal connectivity in complex morphological processes.”
“Coupling stability during cyclic arm movements in the horizontal (transverse) plane is lower in ISO- than in ANTI-directional coupling. We proposed that such impairment arises from
the interference exerted in ISO by the anticipatory postural adjustments (APAs) linked to the primary movements. To evaluate if a link between coupling stability and postural adjustments also exist for arm movements with different postural requirements, we Apoptosis inhibitor focused on arm(s) flexion-extension in the parasagittal plane and started by analysing the APAs distribution in arm, trunk and leg muscles. Fast flexion and extension of the right arm elicited APAs in the left anterior and posterior deltoid that replicated the excitation-inhibition of the homologous prime movers; this pattern would favour ISO and contrast ANTI-coupled movements. Instead, in the left latissimus dorsi, APAs were opposite to the voluntary actions in the right latissimus dorsi, thus favouring
ANTI coupling. Symmetrical APAs were also elicited in right and left erector spinae (rES, lES) and asymmetrical APAs in Ischiocruralis (rIC, lIC), while an antero-posterior force (Fy) and a moment about the vertical axis (Tz) were discharged to the ground. DMH1 When fast discrete movements were ISO-coupled, APAs were symmetrical in trunk (rES, lES) and leg (rIC, lIC) muscles and a large Fy but no Tz was generated. In ANTI coupling, APAs in rES and lES remained symmetrical, whereas they became antisymmetrical in rIC and lIC. A large Tz and a small Fy were recorded. In conclusion, during parasagittal movements, APAs in are elicited in both ISO and ANTI coupling, at variance with horizontal movements where they are only present in ISO. This would suggest that the difference in coupling stability between the two modes is smaller (or even reversed) in parasagittal with respect to horizontal arm movements.