Intensity rates were calculated with reference to calendar time i

Intensity rates were calculated with reference to calendar time instead of time after randomization in order to account for staggered enrollment and seasonal effects of malaria incidence. Associations of anaemia with anti-AMA1 antibody were further explored using a similar analysis.

Results: BMS202 inhibitor A strong effect of vaccine on the incidence of anaemia (risk ratio [AMA1-C1 to comparator (Hiberix)]= 2.01, 95% confidence interval [1.26,3.20]) was demonstrated even after adjusting for baseline haemoglobin, haemoglobinopathies, and age, and using more sophisticated statistical models. Anti-AMA1 antibody levels were not associated with this effect.

Conclusions:

While these additional analyses show a robust effect of vaccination on anaemia, this is an intensive exploration of secondary results and should, therefore, be interpreted with caution. Possible mechanisms of the apparent adverse effect on haemoglobin of vaccination with AMA1-C1/Alhydrogel and implications for blood stage vaccine development are discussed. The potential impact on malaria-associated anaemia should be closely evaluated in clinical trials of AMA1 and other blood stage vaccines

in malaria-exposed populations.”
“Many neurons have epochs in which they fire action potentials in an approximately periodic fashion. To see what effects noise of relatively small amplitude has on such repetitive activity we recently examined the response of the Hodgkin-Huxley (HH) space-clamped system to such noise as the mean and variance of the applied current vary, near the bifurcation Q-VD-Oph purchase to periodic firing. This article is concerned with a more realistic neuron model which includes spatial extent. Employing the Hodgkin-Huxley partial differential equation system, the deterministic component of the input current is restricted to a small segment whereas the stochastic component extends over a region which may or may not overlap the deterministic component. For mean values below, near and above the critical values for repetitive spiking, the effects of weak noise of increasing strength selleck inhibitor is ascertained by simulation. As in the point model, small amplitude

noise near the critical value dampens the spiking activity and leads to a minimum as noise level increases. This was the case for both additive noise and conductance-based noise. Uniform noise along the whole neuron is only marginally more effective in silencing the cell than noise which occurs near the region of excitation. In fact it is found that if signal and noise overlap in spatial extent, then weak noise may inhibit spiking. If, however, signal and noise are applied on disjoint intervals, then the noise has no effect on the spiking activity, no matter how large its region of application, though the trajectories are naturally altered slightly by noise. Such effects could not be discerned in a point model and are important for real neuron behavior.

Comments are closed.