We assessed the consequences of B57-associated mutations on replication capacity, viral control, and clinical outcome after vertical transmission in 13 see more mother-child pairs. We found that
expression of HLA-B57 was associated with exceptional control of HIV during infancy, even when mutations within TW10 and most other B57-restricted epitopes were transmitted, subverting the natural immunodominance of HLA-B57. In contrast, most B57-negative infants born to B57-positive mothers progressed rapidly to AIDS. The presence of T242N led to a reproducible reduction in viral fitness, as demonstrated by in vitro assays using NL4-3 constructs encoding p24 sequences from individual mothers and infants. Associated compensatory mutations within p24-Gag were observed to reverse this impairment and to influence the propensity of T242N to revert after transmission to B57-negative hosts. Moreover, primary failure to control viremia was observed in one infant to whom multiple compensatory mutations were transmitted along with T242N. These parallel
in vivo and in vitro data suggest that HLA-B57 confers its advantage primarily by driving and maintaining a fitness-attenuating mutation in p24-Gag.”
“Multiple sclerosis (MS) is an autoimmune disease in which inflammation, leukocyte infiltration, and ultimately, demyelination occur as a result of innate and adaptive immune-mediated mechanisms. The pathophysiological role of the complement system, a major component of innate immunity, 17DMAG in the development and progression of experimental autoimmune encephalomyelitis (EAE), the animal model for MS has been extensively examined. Previous studies from our lab have shown that the complement receptor for the anaphylatoxin C3a, but not for C5a plays an D-malate dehydrogenase important role in EAE. Based on the important contributions of the complement anaphylatoxin
receptors to other inflammatory conditions in the CNS, we reasoned that deletion of both receptors may reveal underlying interactions between them that are important to EAE pathology. We performed EAE in C3aR/C5aR double knockout mice (C3aR/C5aR(-/-)) and observed delayed onset of disease but no attenuation of disease severity compared to wild type mice. Interestingly there was trend toward greater infiltration of CD4(+), but not CD8(+) T cells, in C3aR/C5aR(-/-) mice with EAE, suggesting altered trafficking of these cells. Antigen-specific T cells isolated from C3aR/C5aR(-/-) mice during acute EAE produced elevated levels of TNF-alpha, but markedly reduced levels of IFN-gamma and IL-12 compared to wild type mice. It remains unclear how the changes in these disease parameters contribute to the loss of the protective effect seen in C3aR(-/-) mice, however our data indicate a level of cross-modulation between the C3aR and C5aR during EAE.